
Discrete Maths

Computational Thinking

Logic

Collections

Relations & FunctionsEnumeration

Graphs and
Networks

Number Theory

Discrete Mathematics
Topic 03 : Collections

Lecture 02 : Sequence Collections

Dr Kieran Murphy cbe

Computing and Mathematics, SETU (Waterford).
(kieran.murphy@setu.ie)

Autumn Semester, 2024

Outline
Mathematical concept of a sequence, AP and GP

Sequence collections

Lists, tuples, and strings

1 of 38

mailto:kieran.murphy@setu.ie

Outline

1. Sequences 2

2. Arithmetic and Geometric Progressions 15
2.1. Definition of Arithmetic and Geometric Progression 16
2.2. Partial Sums of AP and GP 18

3. Implementing Sequence Collections in Python 24
3.1. Common Concepts 25
3.2. Lists 26
3.3. Tuples 36

4. Strings 37

Sequences

Sequence
Informally, a sequence is just an ordered list of numbers. Since the order is important we can
label the values in the list, starting with zero, then one and so on. This gives us the formal
definition of a sequence

Definition 1 (Sequence)
A sequence is a function from the set of natural numbers, N = {0, 1, 2, 3, 4, . . .} to a some set A.
So we have

0

a0

1

a1

2

a2

3

a3

4

a4

n

an
· · · · · ·

and

an is the image of n, and is called the nth term/element of the sequence.

To refer to the entire sequence at once, we will write (an)n∈N or (an)n≥0, or if we are being
sloppy, just (an) (in which case we assume we start the sequence with a0).
The numbers in the subscripts are called indices (the plural of index).

3 of 38

Sequences

Sequence
Informally, a sequence is just an ordered list of numbers. Since the order is important we can
label the values in the list, starting with zero, then one and so on. This gives us the formal
definition of a sequence

Definition 1 (Sequence)
A sequence is a function from the set of natural numbers, N = {0, 1, 2, 3, 4, . . .} to a some set A.
So we have

0

a0

1

a1

2

a2

3

a3

4

a4

n

an
· · · · · ·

and

an is the image of n, and is called the nth term/element of the sequence.

To refer to the entire sequence at once, we will write (an)n∈N or (an)n≥0, or if we are being
sloppy, just (an) (in which case we assume we start the sequence with a0).
The numbers in the subscripts are called indices (the plural of index).

3 of 38

Sequences

Sequence
Informally, a sequence is just an ordered list of numbers. Since the order is important we can
label the values in the list, starting with zero, then one and so on. This gives us the formal
definition of a sequence

Definition 1 (Sequence)
A sequence is a function from the set of natural numbers, N = {0, 1, 2, 3, 4, . . .} to a some set A.
So we have

0

a0

1

a1

2

a2

3

a3

4

a4

n

an
· · · · · ·

and

an is the image of n, and is called the nth term/element of the sequence.

To refer to the entire sequence at once, we will write (an)n∈N or (an)n≥0, or if we are being
sloppy, just (an) (in which case we assume we start the sequence with a0).
The numbers in the subscripts are called indices (the plural of index).

3 of 38

Sequences

Examples of Sequences
The sequence an = n2, where n = 1, 2, 3, . . . has elements

1, 4, 9, 16, 25, 36, 49, . . .

The sequence an = (−1)n, where n = 0, 1, 2, . . . has elements

1,−1, 1,−1, 1,−1, . . .

The sequence an = 2n, where n = 0, 1, 2, . . . has elements

1, 2, 4, 8, 16, 32, 64, 128, . . .

The Fibonacci sequence has elements

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

4 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

A Quick Look at Fibonacci Sequence

During 13th century, in Liber Abaci, Fibonacci* poses the following question (paraphrasing):
Suppose we have two newly-born rabbits, one
female and one male. Suppose these rabbits
produce another pair of female and male rab-
bits after one month. These newly-born rabbits
will, in turn, also mate after one month, produc-
ing another pair, and so on. Rabbits never die.
How many pairs of rabbits exist after one year?

The figure to the right illustrates this process.

Every point denotes one rabbit pair.

A grey point denotes a newborn pair (and not ready
to reproduce).

A red point denotes a mature, reproducing pair.

a1 = 1

a2 = 1

a3 = 2

a4 = 3

a5 = 5

a6 = 8

*discovered earlier by Indian scholars (Gopãla, before 1135), studying rhythmic patterns
5 of 38

Sequences

Closed vs Recursive Formula for Sequences
We often need to specify a rule for the general term in the sequence — we have two options:

Definition 2 (Closed Formula and Recursive Definition)
A closed formula for a sequence an is a formula for an using a fixed, finite number of
operations on n.).

A recursive definition for a sequence (an) consists of a recurrence relation: an equation
relating the current term in the sequence, (an), to earlier terms in the sequence, (an−1),
(an−2), . . . (i.e., terms with smaller index) and initial/terminal condition(s).

Example
The Fibonacci sequence (an) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .) has closed formula

an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5and recursive formula

an = an−1 + an−2︸ ︷︷ ︸
recurrence relation

and a0 = 0, a1 = 1︸ ︷︷ ︸
terminal conditions

Hard to obtain, easy to use

Easy to obtain,
hard to use

6 of 38

Sequences

Closed vs Recursive Formula for Sequences
We often need to specify a rule for the general term in the sequence — we have two options:

Definition 2 (Closed Formula and Recursive Definition)
A closed formula for a sequence an is a formula for an using a fixed, finite number of
operations on n.).

A recursive definition for a sequence (an) consists of a recurrence relation: an equation
relating the current term in the sequence, (an), to earlier terms in the sequence, (an−1),
(an−2), . . . (i.e., terms with smaller index) and initial/terminal condition(s).

Example
The Fibonacci sequence (an) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .) has closed formula

an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5and recursive formula

an = an−1 + an−2︸ ︷︷ ︸
recurrence relation

and a0 = 0, a1 = 1︸ ︷︷ ︸
terminal conditions

Hard to obtain, easy to use

Easy to obtain,
hard to use

6 of 38

Sequences

Closed vs Recursive Formula for Sequences
We often need to specify a rule for the general term in the sequence — we have two options:

Definition 2 (Closed Formula and Recursive Definition)
A closed formula for a sequence an is a formula for an using a fixed, finite number of
operations on n.).

A recursive definition for a sequence (an) consists of a recurrence relation: an equation
relating the current term in the sequence, (an), to earlier terms in the sequence, (an−1),
(an−2), . . . (i.e., terms with smaller index) and initial/terminal condition(s).

Example
The Fibonacci sequence (an) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .) has closed formula

an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5and recursive formula

an = an−1 + an−2︸ ︷︷ ︸
recurrence relation

and a0 = 0, a1 = 1︸ ︷︷ ︸
terminal conditions

Hard to obtain, easy to use

Easy to obtain,
hard to use

6 of 38

Sequences

Computing Fibonacci Sequence using Closed Formula

Compute the first 7 terms of the Fibonacci sequence using the closed formula

an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5

1•
1 import math
2

3 for n in range(7):
4

5 tmp_1 = (1 + math.sqrt(5)) / 2
6 tmp_2 = (1 − math.sqrt(5)) / 2
7

8 a_n = (tmp_1**n − tmp_2**n) / math.sqrt(5)
9

10 print(n, round(a_n))

7 of 38

import math

for n in range(7):

 tmp_1 = (1 + math.sqrt(5)) / 2
 tmp_2 = (1 - math.sqrt(5)) / 2

 a_n = (tmp_1**n - tmp_2**n) / math.sqrt(5)

 print(n, round(a_n))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_fib_seq_closed.ipynb

Sequences

Computing Fibonacci Sequence using Closed Formula

Compute the first 7 terms of the Fibonacci sequence using the closed formula

an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5

2•
1 import math
2

3 for n in range(7):
4

5 tmp_1 = (1 + math.sqrt(5)) / 2
6 tmp_2 = (1 − math.sqrt(5)) / 2
7

8 a_n = (tmp_1**n − tmp_2**n) / math.sqrt(5)
9

10 print(n, round(a_n))

0 0
1 1
2 1
3 2
4 3
5 5
6 8

7 of 38

import math

for n in range(7):

 tmp_1 = (1 + math.sqrt(5)) / 2
 tmp_2 = (1 - math.sqrt(5)) / 2

 a_n = (tmp_1**n - tmp_2**n) / math.sqrt(5)

 print(n, round(a_n))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_fib_seq_closed.ipynb

Sequences

Computing Fibonacci Sequence using Recursive Formula

Compute the first 7 terms of the Fibonacci sequence using the recursive formula
3•

1 previous_previous = 0
2 previous = 1
3

4 for n in range(7):
5

6 if n == 0: # terminal condition n=0

7 current = 0
8 elif n == 1: # terminal condition n=1

9 current = 1
10 else: # recursive formula n>1

11 current = previous + previous_previous
12

13 # leapfrog values

14 previous_previous = previous
15 previous = current
16

17 print(n, current)

8 of 38

previous_previous = 0
previous = 1

for n in range(7):

 if n == 0: # terminal condition n=0
 current = 0
 elif n == 1: # terminal condition n=1
 current = 1
 else: # recursive formula n>1
 current = previous + previous_previous

 # leapfrog values
 previous_previous = previous
 previous = current

 print(n, current)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_fib_seq_recursive.ipynb

Sequences

Computing Fibonacci Sequence using Recursive Formula

Compute the first 7 terms of the Fibonacci sequence using the recursive formula
4•

1 previous_previous = 0
2 previous = 1
3

4 for n in range(7):
5

6 if n == 0: # terminal condition n=0

7 current = 0
8 elif n == 1: # terminal condition n=1

9 current = 1
10 else: # recursive formula n>1

11 current = previous + previous_previous
12

13 # leapfrog values

14 previous_previous = previous
15 previous = current
16

17 print(n, current)

previous_previous

an−2

previous

an−1

current

an

0 0
1 1
2 1
3 2
4 3
5 5
6 8

8 of 38

previous_previous = 0
previous = 1

for n in range(7):

 if n == 0: # terminal condition n=0
 current = 0
 elif n == 1: # terminal condition n=1
 current = 1
 else: # recursive formula n>1
 current = previous + previous_previous

 # leapfrog values
 previous_previous = previous
 previous = current

 print(n, current)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_fib_seq_recursive.ipynb

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Example

Example 3
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find a5 and a4.
And we repeat this process down to a0 and a1. We will use the approach when we define
functions.
But for now, we will determine a6 by starting at a0 and a1, and working upwards towards a6.

a0 = 3 (given terminal condition)

a1 = 4 (given terminal condition)

a2 = 2 · 4 − 3 = 5 (use n = 2 in recursive formula)

a3 = 2 · 5 − 4 = 6 (use n = 3 in recursive formula)

a4 = 2 · 6 − 5 = 7 (use n = 4 in recursive formula)

a5 = 2 · 7 − 6 = 8 (use n = 5 in recursive formula)

a6 = 2 · 8 − 7 = 9 (use n = 6 in recursive formula)

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier
to use to calculate a general
term, but it is often much
harder, if not impossible, to
derive.

9 of 38

Sequences

Computing Sequence using Closed Formula

First 7 terms of the sequence using the closed formula

an = n + 3

5•
1 for n in range(7):
2

3 a_n = n + 3
4

5 print(n, a_n)

10 of 38

for n in range(7):

 a_n = n + 3

 print(n, a_n)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_seq_ex1_closed.ipynb

Sequences

Computing Sequence using Closed Formula

First 7 terms of the sequence using the closed formula

an = n + 3

6•
1 for n in range(7):
2

3 a_n = n + 3
4

5 print(n, a_n)

0 3
1 4
2 5
3 6
4 7
5 8
6 9

10 of 38

for n in range(7):

 a_n = n + 3

 print(n, a_n)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_seq_ex1_closed.ipynb

Sequences

Computing Sequence using Recursive Formula

Compute the first 7 terms of the Fibonacci sequence using the recursive formula
7•

1 previous_previous = 3
2 previous = 4
3

4 for n in range(7):
5

6 if n == 0: # terminal condition n=0

7 current = 3
8 elif n == 1: # terminal condition n=1

9 current = 4
10 else: # recursive formula n>1

11 current = 2 * previous − previous_previous
12

13 # leapfrog values

14 previous_previous = previous
15 previous = current
16

17 print(n, current)

11 of 38

previous_previous = 3
previous = 4

for n in range(7):

 if n == 0: # terminal condition n=0
 current = 3
 elif n == 1: # terminal condition n=1
 current = 4
 else: # recursive formula n>1
 current = 2 * previous - previous_previous

 # leapfrog values
 previous_previous = previous
 previous = current

 print(n, current)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_seq_ex1_recursive.ipynb

Sequences

Computing Sequence using Recursive Formula

Compute the first 7 terms of the Fibonacci sequence using the recursive formula
8•

1 previous_previous = 3
2 previous = 4
3

4 for n in range(7):
5

6 if n == 0: # terminal condition n=0

7 current = 3
8 elif n == 1: # terminal condition n=1

9 current = 4
10 else: # recursive formula n>1

11 current = 2 * previous − previous_previous
12

13 # leapfrog values

14 previous_previous = previous
15 previous = current
16

17 print(n, current)

previous_previous

an−2

previous

an−1

current

an

0 3
1 4
2 5
3 6
4 7
5 8
6 9

11 of 38

previous_previous = 3
previous = 4

for n in range(7):

 if n == 0: # terminal condition n=0
 current = 3
 elif n == 1: # terminal condition n=1
 current = 4
 else: # recursive formula n>1
 current = 2 * previous - previous_previous

 # leapfrog values
 previous_previous = previous
 previous = current

 print(n, current)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_seq_ex1_recursive.ipynb

Sequences

Summation Notation
The

∑
operator is used to denote the addition of elements from a sequence/list.

It can be implemented using a for loop in Python/Java/Processing.

Example 4
10∑

k=1

[
k2
]

︸ ︷︷ ︸
“Determine the value of expression within the brackets

as k = 1, 2, 3, . . . , 10 and add all the results.”

= 12︸︷︷︸
k = 1

+ 22︸︷︷︸
k = 2

+ 32︸︷︷︸
k = 3

+ 42︸︷︷︸
k = 4

+ · · ·+ 102︸︷︷︸
k = 10

= 1 + 4 + 9 + 16 + 25 + 36 + · · ·+ 100 = 385

9•
1 result = 0 # start result with zero - why?

2 for k in range(1,11):
3 term = k*k
4 result += term # shorthand for result = result + term

5

6 print(result) 385
12 of 38

result = 0 # start result with zero - why?
for k in range(1,11):
 term = k*k
 result += term # shorthand for result = result + term

print(result)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sum_loop.ipynb

Sequences

Product Notation
The

∏
operator is used to denote the product of elements from a sequence/list.

It can be implemented using a for loop in Python/Java/Processing.

Example 5
10∏

k=1

[
k2
]

︸ ︷︷ ︸
“Determine the value of expression within the brackets

as k = 1, 2, 3, . . . , 10 and multiply all the results.”

= 12︸︷︷︸
k = 1

× 22︸︷︷︸
k = 2

× 32︸︷︷︸
k = 3

× 42︸︷︷︸
k = 4

× · · · × 102︸︷︷︸
k = 10

= 1 × 4 × 9 × 16 × 25 × 36 × · · · × 100 = 13, 168, 189, 440, 000

10•
1 result = 1 # start result with one - why?

2 for k in range(1,11):
3 term = k*k
4 result *= term # shorthand for result = result * term

5

6 print(result) 13168189440000
13 of 38

result = 1 # start result with one - why?
for k in range(1,11):
 term = k*k
 result *= term # shorthand for result = result * term

print(result)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_prod_loop.ipynb

Review Exercises 1 (Sequences)
Sequences
Question 1:
Expand the following sums

(a)
7∑

k=4

k (b)
5∑

k=1

(k1 − 1) (c)
4∑

n=1

(10n) (d)
5∑

k=1

(k1 − 1)

Question 2:
Write the following expressions using summation notation

(a) 2 + 4 + 6 + 8 + 10 (b) 1 + 4 + 7 + 10 (c) 1
4
+

1
2
+ 1 + 2 + 4

Question 3:
Expand the following sums

(a)
4∏

k=−4

k (b)
4∏

k=1

(k1 − 1) (c)
∏
k∈S

(−1)k where S = {2, 4, 6, 7}.

Question 4:
For each of the following sequences, determine a recursive definition.

(a) 2, 4, 6, 10, 16, 26, 42,

Outline

1. Sequences 2

2. Arithmetic and Geometric Progressions 15
2.1. Definition of Arithmetic and Geometric Progression 16
2.2. Partial Sums of AP and GP 18

3. Implementing Sequence Collections in Python 24
3.1. Common Concepts 25
3.2. Lists 26
3.3. Tuples 36

4. Strings 37

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d, then we have
sequence

a,

︸︷︷︸
a0

+d

a + d,

︸︷︷︸
a1

+d

a + 2d,

︸︷︷︸
a2

+d

a + 3d,

︸︷︷︸
a3

+d

a + nd,

︸︷︷︸
an

+d

.

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the first term
listed is a0.

• 2, 5, 8, 11, 14, • 50, 43, 36, 29,

16 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d, then we have
sequence

a,

︸︷︷︸
a0

+d

a + d,

︸︷︷︸
a1

+d

a + 2d,

︸︷︷︸
a2

+d

a + 3d,

︸︷︷︸
a3

+d

a + nd,

︸︷︷︸
an

+d

.

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the first term
listed is a0.

• 2, 5, 8, 11, 14, • 50, 43, 36, 29,

16 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d, then we have
sequence

a,︸︷︷︸
a0

+d

a + d,︸︷︷︸
a1

+d

a + 2d,︸︷︷︸
a2

+d

a + 3d,︸︷︷︸
a3

+d

a + nd,︸︷︷︸
an

+d

.

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the first term
listed is a0.

• 2, 5, 8, 11, 14, • 50, 43, 36, 29,

16 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d, then we have
sequence

a,︸︷︷︸
a0

+d

a + d,︸︷︷︸
a1

+d

a + 2d,︸︷︷︸
a2

+d

a + 3d,︸︷︷︸
a3

+d

a + nd,︸︷︷︸
an

+d

.

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the first term
listed is a0.

• 2, 5, 8, 11, 14, • 50, 43, 36, 29,

16 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d, then we have
sequence

a,︸︷︷︸
a0

+d

a + d,︸︷︷︸
a1

+d

a + 2d,︸︷︷︸
a2

+d

a + 3d,︸︷︷︸
a3

+d

a + nd,︸︷︷︸
an

+d

.

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the first term
listed is a0.

• 2, 5, 8, 11, 14, • 50, 43, 36, 29,
16 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,

︸︷︷︸
a0

×r

ar,

︸︷︷︸
a1

×r

ar2,

︸︷︷︸
a2

×r

ar3,

︸︷︷︸
a3

×r

arn,

︸︷︷︸
an

×r

.

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term listed is a0.

• 3, 6, 12, 24, 48, . . . • 27, 9, 3, 1, 1/3, . . .

17 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,

︸︷︷︸
a0

×r

ar,

︸︷︷︸
a1

×r

ar2,

︸︷︷︸
a2

×r

ar3,

︸︷︷︸
a3

×r

arn,

︸︷︷︸
an

×r

.

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term listed is a0.

• 3, 6, 12, 24, 48, . . . • 27, 9, 3, 1, 1/3, . . .

17 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,︸︷︷︸
a0

×r

ar,︸︷︷︸
a1

×r

ar2,︸︷︷︸
a2

×r

ar3,︸︷︷︸
a3

×r

arn,︸︷︷︸
an

×r

.

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term listed is a0.

• 3, 6, 12, 24, 48, . . . • 27, 9, 3, 1, 1/3, . . .

17 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,︸︷︷︸
a0

×r

ar,︸︷︷︸
a1

×r

ar2,︸︷︷︸
a2

×r

ar3,︸︷︷︸
a3

×r

arn,︸︷︷︸
an

×r

.

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term listed is a0.

• 3, 6, 12, 24, 48, . . . • 27, 9, 3, 1, 1/3, . . .

17 of 38

Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,︸︷︷︸
a0

×r

ar,︸︷︷︸
a1

×r

ar2,︸︷︷︸
a2

×r

ar3,︸︷︷︸
a3

×r

arn,︸︷︷︸
an

×r

.

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term listed is a0.

• 3, 6, 12, 24, 48, . . . • 27, 9, 3, 1, 1/3, . . .
17 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Motivation
Look at the sequence (Tn)n≥1 which starts 1, 3, 6, 10, 15, These are called the triangular
numbers since they represent the number of dots in an equilateral triangle (think of how you
arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of 2 and a row of 1).

T1 = 1 T2 = 3 T3 = 6 T4 = 10

+2 +3 +4 +5

Is this sequence arithmetic?

No, since 3 − 1 = 2 and 6 − 3 = 3 ̸= 2, so there is no common difference.

Is the sequence geometric?

No. 3/1 = 3 but 6/3 = 2, so there is no common ratio.
Notice that the differences between terms generate an arithmetic sequence: 2, 3, 4, 5, 6,
This says that the nth term of the triangular sequence is the sum of the first n terms in the
sequence 1, 2, 3, 4, 5, . . ., i.e, the triangular sequence is a sequence of partial sums.

18 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Motivation
Look at the sequence (Tn)n≥1 which starts 1, 3, 6, 10, 15, These are called the triangular
numbers since they represent the number of dots in an equilateral triangle (think of how you
arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of 2 and a row of 1).

T1 = 1 T2 = 3 T3 = 6 T4 = 10

+2 +3 +4 +5

Is this sequence arithmetic?
No, since 3 − 1 = 2 and 6 − 3 = 3 ̸= 2, so there is no common difference.
Is the sequence geometric?

No. 3/1 = 3 but 6/3 = 2, so there is no common ratio.
Notice that the differences between terms generate an arithmetic sequence: 2, 3, 4, 5, 6,
This says that the nth term of the triangular sequence is the sum of the first n terms in the
sequence 1, 2, 3, 4, 5, . . ., i.e, the triangular sequence is a sequence of partial sums.

18 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Motivation
Look at the sequence (Tn)n≥1 which starts 1, 3, 6, 10, 15, These are called the triangular
numbers since they represent the number of dots in an equilateral triangle (think of how you
arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of 2 and a row of 1).

T1 = 1 T2 = 3 T3 = 6 T4 = 10

+2 +3 +4 +5

Is this sequence arithmetic?
No, since 3 − 1 = 2 and 6 − 3 = 3 ̸= 2, so there is no common difference.
Is the sequence geometric?
No. 3/1 = 3 but 6/3 = 2, so there is no common ratio.

Notice that the differences between terms generate an arithmetic sequence: 2, 3, 4, 5, 6,
This says that the nth term of the triangular sequence is the sum of the first n terms in the
sequence 1, 2, 3, 4, 5, . . ., i.e, the triangular sequence is a sequence of partial sums.

18 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Motivation
Look at the sequence (Tn)n≥1 which starts 1, 3, 6, 10, 15, These are called the triangular
numbers since they represent the number of dots in an equilateral triangle (think of how you
arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of 2 and a row of 1).

T1 = 1 T2 = 3 T3 = 6 T4 = 10
+2 +3 +4 +5

Is this sequence arithmetic?
No, since 3 − 1 = 2 and 6 − 3 = 3 ̸= 2, so there is no common difference.
Is the sequence geometric?
No. 3/1 = 3 but 6/3 = 2, so there is no common ratio.
Notice that the differences between terms generate an arithmetic sequence: 2, 3, 4, 5, 6,
This says that the nth term of the triangular sequence is the sum of the first n terms in the
sequence 1, 2, 3, 4, 5, . . ., i.e, the triangular sequence is a sequence of partial sums.

18 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add I

Example 10

Find the sum: 2 + 5 + 8 + 11 + 14 + · · ·+ 470.

Solution. If we add the first and last terms, we get 472. The second term and second-to-last
term also add up to 472. To keep track of everything, we might express this as follows. Call the
sum S. Then,

S = 2 + 5 + 8 + · · ·+ 467 + 470
+ S = 470 + 467 + 464 + · · ·+ 5 + 2

2S = 472 + 472 + 472 + · · ·+ 472 + 472

Hence, to find 2S then we add 472 to itself a number of times. What number?
We need to decide how many terms are in the sum. Since the terms form an arithmetic sequence,
the nth term in the sum (counting 2 as the 0th term) can be expressed as 2 + 3n. If 2 + 3n = 470
then n = 156. So n ranges from 0 to 156, giving 157 terms in the sum. This is the number of
472’s in the sum for 2S. Thus

2S = 157 × 472 = 74104 =⇒ S =
74104

2
= 37052

19 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add I

Example 10

Find the sum: 2 + 5 + 8 + 11 + 14 + · · ·+ 470.

Solution. If we add the first and last terms, we get 472. The second term and second-to-last
term also add up to 472. To keep track of everything, we might express this as follows. Call the
sum S. Then,

S = 2 + 5 + 8 + · · ·+ 467 + 470
+ S = 470 + 467 + 464 + · · ·+ 5 + 2

2S = 472 + 472 + 472 + · · ·+ 472 + 472

Hence, to find 2S then we add 472 to itself a number of times. What number?
We need to decide how many terms are in the sum. Since the terms form an arithmetic sequence,
the nth term in the sum (counting 2 as the 0th term) can be expressed as 2 + 3n. If 2 + 3n = 470
then n = 156. So n ranges from 0 to 156, giving 157 terms in the sum. This is the number of
472’s in the sum for 2S. Thus

2S = 157 × 472 = 74104 =⇒ S =
74104

2
= 37052

19 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add I

Example 10

Find the sum: 2 + 5 + 8 + 11 + 14 + · · ·+ 470.

Solution. If we add the first and last terms, we get 472. The second term and second-to-last
term also add up to 472. To keep track of everything, we might express this as follows. Call the
sum S. Then,

S = 2 + 5 + 8 + · · ·+ 467 + 470
+ S = 470 + 467 + 464 + · · ·+ 5 + 2

2S = 472 + 472 + 472 + · · ·+ 472 + 472

Hence, to find 2S then we add 472 to itself a number of times. What number?
We need to decide how many terms are in the sum. Since the terms form an arithmetic sequence,
the nth term in the sum (counting 2 as the 0th term) can be expressed as 2 + 3n. If 2 + 3n = 470
then n = 156. So n ranges from 0 to 156, giving 157 terms in the sum. This is the number of
472’s in the sum for 2S. Thus

2S = 157 × 472 = 74104 =⇒ S =
74104

2
= 37052

19 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add I

Example 10

Find the sum: 2 + 5 + 8 + 11 + 14 + · · ·+ 470.

Solution. If we add the first and last terms, we get 472. The second term and second-to-last
term also add up to 472. To keep track of everything, we might express this as follows. Call the
sum S. Then,

S = 2 + 5 + 8 + · · ·+ 467 + 470
+ S = 470 + 467 + 464 + · · ·+ 5 + 2

2S = 472 + 472 + 472 + · · ·+ 472 + 472

Hence, to find 2S then we add 472 to itself a number of times. What number?
We need to decide how many terms are in the sum. Since the terms form an arithmetic sequence,
the nth term in the sum (counting 2 as the 0th term) can be expressed as 2 + 3n. If 2 + 3n = 470
then n = 156. So n ranges from 0 to 156, giving 157 terms in the sum. This is the number of
472’s in the sum for 2S. Thus

2S = 157 × 472 = 74104 =⇒ S =
74104

2
= 37052

19 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add II
The process covered in the previous slide will work for any sum of arithmetic sequences.
STEP 1 Call the sum S.
STEP 2 Reverse and add.
STEP 3 This produces a single number added to itself many times.
STEP 4 Determine the number of times.
STEP 5 Multiply. Divide by 2. Done

Definition 11 (Arithmetic Series)
The sum of the terms of the arithmetic sequence

Sn =
[
a
]
+
[
a + d

]
+
[
a + 2d

]
+ · · ·+

[
a + nd

]
is called an arithmetic series and is given by

Sn = (n + 1)a +
dn(n + 1)

2

20 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add II
The process covered in the previous slide will work for any sum of arithmetic sequences.
STEP 1 Call the sum S.
STEP 2 Reverse and add.
STEP 3 This produces a single number added to itself many times.
STEP 4 Determine the number of times.
STEP 5 Multiply. Divide by 2. Done

Definition 11 (Arithmetic Series)
The sum of the terms of the arithmetic sequence

Sn =
[
a
]
+
[
a + d

]
+
[
a + 2d

]
+ · · ·+

[
a + nd

]
is called an arithmetic series and is given by

Sn = (n + 1)a +
dn(n + 1)

2

20 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I
To find the sum of a geometric sequence, we cannot just reverse and add. Instead we multiply and
subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3, and common
ratio, r = 2.

STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288
2S = 6 + 12 + 24 + · · ·+ 12288 +24576
−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3 − 24576 =⇒ S = 24573

21 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I
To find the sum of a geometric sequence, we cannot just reverse and add. Instead we multiply and
subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3, and common
ratio, r = 2.
STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288
2S = 6 + 12 + 24 + · · ·+ 12288 +24576
−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3 − 24576 =⇒ S = 24573

21 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I
To find the sum of a geometric sequence, we cannot just reverse and add. Instead we multiply and
subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3, and common
ratio, r = 2.
STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288

2S = 6 + 12 + 24 + · · ·+ 12288 +24576
−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3 − 24576 =⇒ S = 24573

21 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I
To find the sum of a geometric sequence, we cannot just reverse and add. Instead we multiply and
subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3, and common
ratio, r = 2.
STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288
2S = 6 + 12 + 24 + · · ·+ 12288 +24576

−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3 − 24576 =⇒ S = 24573

21 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I
To find the sum of a geometric sequence, we cannot just reverse and add. Instead we multiply and
subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3, and common
ratio, r = 2.
STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288
2S = 6 + 12 + 24 + · · ·+ 12288 +24576
−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3 − 24576 =⇒ S = 24573

21 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract II

Definition 13 (Geometric Series)
The sum of the terms of the geometric sequence

Sn =
[
a
]
+
[
ar
]
+
[
ar2]+ · · ·+

[
arn]

is called a geometric series and is given by

Sn =
a(1 − rn+1)

1 − r

In the special case of −1 < r < 1 the terms in the geometric sequence tends towards zero
fast enough that the sum of the series tends to the finite value

S∞ = lim
n→∞

Sn = lim
n→∞

a
1 − r

since rn+1 → 0 as n → ∞.
22 of 38

Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract II

Definition 13 (Geometric Series)
The sum of the terms of the geometric sequence

Sn =
[
a
]
+
[
ar
]
+
[
ar2]+ · · ·+

[
arn]

is called a geometric series and is given by

Sn =
a(1 − rn+1)

1 − r

In the special case of −1 < r < 1 the terms in the geometric sequence tends towards zero
fast enough that the sum of the series tends to the finite value

S∞ = lim
n→∞

Sn = lim
n→∞

a
1 − r

since rn+1 → 0 as n → ∞.
22 of 38

Review Exercises 2 (Arithmetic and Geometric Progressions)
Question 1:
Consider the sequence 5, 9, 13, 17, 21, . . . with a1 = 5

(a) Give a recursive definition for the sequence.
(b) Give a closed formula for the nth term of the sequence.
(c) Is 2013 a term in the sequence? Explain.
(d) How many terms does the sequence 5, 9, 13, 17, 21, . . . , 533 have?
(e) Determine the sum: 5 + 9 + 13 + 17 + 21 + · · ·+ 533. Show your work.
(f) Use what you found above to find bn, the nth term of 1, 6, 15, 28, 45, . . ., where b0 = 1

Outline

1. Sequences 2

2. Arithmetic and Geometric Progressions 15
2.1. Definition of Arithmetic and Geometric Progression 16
2.2. Partial Sums of AP and GP 18

3. Implementing Sequence Collections in Python 24
3.1. Common Concepts 25
3.2. Lists 26
3.3. Tuples 36

4. Strings 37

Implementing Sequence Collections in Python Common Concepts

Math vs. Programming (Python/Processing/Java/. . .)

Computers are finite

In mathematics we can define a sequence, just like

an = 2n, for n ≥ 0 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

and have no concerns that it has infinite length or that the values become arbitrary large. This is
not the case when programming — we (or the language designers) need to deal with both of these
issues.

Infinite length sequences in Mathematics → (usually) Finite length sequences in Python

Programmers need standard tasks/operations

Indexing — Each position in a sequence is given a unique position/index, so we can
access/change a single element by referring to its index.
Slicing — Given a sequence collection we want to create a copy of part of that sequence.
Iterating over — Looping over all elements (for loops and list comprehensions).
Filtering — Given a collection construct a new collection containing only elements that
satisfy a condition. 25 of 38

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
11•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)
26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
12•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)

set() []

26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
13•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)

set() []
{3} [3]

26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
14•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)

set() []
{3} [3]
{3} [3, 3]

26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
15•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)

set() []
{3} [3]
{3} [3, 3]
{ 'Hello', 3} [3, 3, 'Hello']

26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Python Implementation — Sets vs Lists
16•
1 S = set() # cannot use {}

2 L = [] # here we can use list() or []

3 print(S, L)
4

5 S.add(3) # we ADD to a set

6 L.append(3) # but we APPEND to END of list

7 print(S, L)
8

9 S.add(3) # elements are distinct

10 L.append(3)
11 print(S, L)
12

13 S.add("Hello") # can store mixture of data types

14 L.append("Hello") # can store mixture of data types

15 print(S,L)
16

17 S.add("All") # unordered

18 L.append("All") # ordered

19 print(S,L)

set() []
{3} [3]
{3} [3, 3]
{ 'Hello', 3} [3, 3, 'Hello']
{ 'Hello', 'All', 3} [3, 3, 'Hello', 'All']

26 of 38

S = set() # cannot use {}
L = [] # here we can use list() or []
print(S, L)

S.add(3) # we ADD to a set
L.append(3) # but we APPEND to END of list
print(S, L)

S.add(3) # elements are distinct
L.append(3)
print(S, L)

S.add("Hello") # can store mixture of data types
L.append("Hello") # can store mixture of data types
print(S,L)

S.add("All") # unordered
L.append("All") # ordered
print(S,L)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets_vs_lists.ipynb

Implementing Sequence Collections in Python Lists

Indexing
To help illustrate indexing we will define a list containing the powers of 2 up to and including 210.

17•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]

The collection (a list) is ordered — so we can talk about which data value (item/element)
comes before/after another data value.

In addition, each data value has a position, called index, which counts from the left of the
list. Python is zero-based language so index starts at zero.

Python, also support negative indexing which counts backwards from the end of the list.

1
0

-11
2

1

-10
4

2

-9
8

3

-8
16

4

-7
32

5

-6
64

6

-5
128

7

-4
256

8

-3
512

9

-2
1024

10

-1

standard indexing

negative indexing

A[9]

A[−9]

or A9 in mathematics

27 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

Implementing Sequence Collections in Python Lists

Slicing I

Definition 14 (Slicing)
Slicing is a compact syntax to construct a sub-sequence collection from a larger collection.
A slice consists of

[start:end:step]
where

start— the starting index (inclusive). Defaults to 0 (i.e., start of the collection) if omitted.

end— the ending index (exclusive). Defaults to length of collection if omitted.

step— the amount by which the index increases, defaults to 1. If it’s negative, you’re
slicing over the collection in reverse.

Some common slices:
Given collection, A, then

A[:] creates a copy of the entire collection. (uses default value for start, end, and step)

A[::−1] creates a copy of the entire collection in reverse (step=-1 reverses the collection)
28 of 38

Implementing Sequence Collections in Python Lists

Slicing II

1
0

-11
A 2

1

-10
A 4

2

-9
A 8

3

-8
A 16

4

-7
A 32

5

-6
A 64

6

-5
A 128

7

-4
A 256

8

-3
A 512

9

-2
A 1024

10

-1
A

A[9]

29 of 38

Implementing Sequence Collections in Python Lists

Slicing II

1
0

-11
A 2

1

-10
A 4

2

-9
A 8

3

-8
A 16

4

-7
A 32

5

-6
A 64

6

-5
A 128

7

-4
A 256

8

-3
A 512

9

-2
A 1024

10

-1
A

A[9]

1A[:5] 2A[:5] 4A[:5] 8A[:5] 16A[:5]
Create a subsequence from start of sequence,
from index (inclusive) start (default=0) up to index
(but excluding) end=5.

29 of 38

Implementing Sequence Collections in Python Lists

Slicing II

1
0

-11
A 2

1

-10
A 4

2

-9
A 8

3

-8
A 16

4

-7
A 32

5

-6
A 64

6

-5
A 128

7

-4
A 256

8

-3
A 512

9

-2
A 1024

10

-1
A

A[9]

1A[:5] 2A[:5] 4A[:5] 8A[:5] 16A[:5]
Create a subsequence from start of sequence,
from index (inclusive) start (default=0) up to index
(but excluding) end=5.

32A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

64A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

128A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

29 of 38

Implementing Sequence Collections in Python Lists

Slicing II

1
0

-11
A 2

1

-10
A 4

2

-9
A 8

3

-8
A 16

4

-7
A 32

5

-6
A 64

6

-5
A 128

7

-4
A 256

8

-3
A 512

9

-2
A 1024

10

-1
A

A[9]

1A[:5] 2A[:5] 4A[:5] 8A[:5] 16A[:5]
Create a subsequence from start of sequence,
from index (inclusive) start (default=0) up to index
(but excluding) end=5.

32A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

64A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

128A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

256A[8:] 512A[8:] 1024A[8:]
Create a subsequence from end of sequence,
from index (inclusive) start=8 up to index (but ex-
cluding) end (default length of sequence=11).

29 of 38

Implementing Sequence Collections in Python Lists

Slicing II

+3 +3

1
0

-11
A 2

1

-10
A 4

2

-9
A 8

3

-8
A 16

4

-7
A 32

5

-6
A 64

6

-5
A 128

7

-4
A 256

8

-3
A 512

9

-2
A 1024

10

-1
A

A[9]

1A[:5] 2A[:5] 4A[:5] 8A[:5] 16A[:5]
Create a subsequence from start of sequence,
from index (inclusive) start (default=0) up to index
(but excluding) end=5.

32A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

64A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

128A[5:8]
Create a subsequence from middle of sequence,
from index (inclusive) start=5 up to index (but ex-
cluding) end=8.

256A[8:] 512A[8:] 1024A[8:]
Create a subsequence from end of sequence,
from index (inclusive) start=8 up to index (but ex-
cluding) end (default length of sequence=11).

1A[0:9:3]
Create a subsequence from index (inclusive) start=0
up to index (but excluding) end=9 using a step=3.8A[0:9:3]
Create a subsequence from index (inclusive) start=0
up to index (but excluding) end=9 using a step=3.64A[0:9:3]
Create a subsequence from index (inclusive) start=0
up to index (but excluding) end=9 using a step=3.

29 of 38

Implementing Sequence Collections in Python Lists

Iterating over Collections

Python’s for is used to iterate over elements in a collections.

Function enumerate counts the elements during iteratation.
18•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # loop over all elements

4 for value in A:
5 print(value)
6

7 # count and looping over all elements

8 for pos, value in enumerate(A):
9 print(pos, value)

10

11 # loop over all positions - rarely used in python

12 for pos in range(len(A)):
13 print(pos, A[pos])

30 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

loop over all elements
for value in A:
 print(value)

count and looping over all elements
for pos, value in enumerate(A):
 print(pos, value)

loop over all positions - rarely used in python
for pos in range(len(A)):
 print(pos, A[pos])

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_looping.ipynb

Implementing Sequence Collections in Python Lists

Iterating over Collections

Python’s for is used to iterate over elements in a collections.

Function enumerate counts the elements during iteratation.
19•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # loop over all elements

4 for value in A:
5 print(value)
6

7 # count and looping over all elements

8 for pos, value in enumerate(A):
9 print(pos, value)

10

11 # loop over all positions - rarely used in python

12 for pos in range(len(A)):
13 print(pos, A[pos])

1
2
4
8
16
32
64
128
256
512
1024

30 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

loop over all elements
for value in A:
 print(value)

count and looping over all elements
for pos, value in enumerate(A):
 print(pos, value)

loop over all positions - rarely used in python
for pos in range(len(A)):
 print(pos, A[pos])

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_looping.ipynb

Implementing Sequence Collections in Python Lists

Iterating over Collections

Python’s for is used to iterate over elements in a collections.

Function enumerate counts the elements during iteratation.
20•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # loop over all elements

4 for value in A:
5 print(value)
6

7 # count and looping over all elements

8 for pos, value in enumerate(A):
9 print(pos, value)

10

11 # loop over all positions - rarely used in python

12 for pos in range(len(A)):
13 print(pos, A[pos])

1
2
4
8
16
32
64
128
256
512
1024

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

30 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

loop over all elements
for value in A:
 print(value)

count and looping over all elements
for pos, value in enumerate(A):
 print(pos, value)

loop over all positions - rarely used in python
for pos in range(len(A)):
 print(pos, A[pos])

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_looping.ipynb

Implementing Sequence Collections in Python Lists

Filtering

Definition 15 (Filtering)
Build a collection from another by selecting (filtering) elements in the collection that satisfy
some criteria.

Task — Given a list of powers of 2, select all values that have remainder 4 when divided by 10:
21•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # old style filtering

4 B = []
5 for value in A:
6 if value % 10==4: # remainder is 4

7 B.append(value)
8 print(B)
9

10 # or using list comprehension

11 B = [value for value in A if value % 10==4]
12 print(B)

31 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

old style filtering
B = []
for value in A:
 if value % 10==4: # remainder is 4
 B.append(value)
print(B)

or using list comprehension
B = [value for value in A if value % 10==4]
print(B)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

Filtering

Definition 15 (Filtering)
Build a collection from another by selecting (filtering) elements in the collection that satisfy
some criteria.

Task — Given a list of powers of 2, select all values that have remainder 4 when divided by 10:
22•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # old style filtering

4 B = []
5 for value in A:
6 if value % 10==4: # remainder is 4

7 B.append(value)
8 print(B)
9

10 # or using list comprehension

11 B = [value for value in A if value % 10==4]
12 print(B)

[4, 64, 1024]
[4, 64, 1024]

31 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

old style filtering
B = []
for value in A:
 if value % 10==4: # remainder is 4
 B.append(value)
print(B)

or using list comprehension
B = [value for value in A if value % 10==4]
print(B)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

Filtering

Definition 15 (Filtering)
Build a collection from another by selecting (filtering) elements in the collection that satisfy
some criteria.

Task — Given a list of powers of 2, select all values that have remainder 4 when divided by 10:
23•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # old style filtering

4 B = []
5 for value in A:
6 if value % 10==4: # remainder is 4

7 B.append(value)
8 print(B)
9

10 # or using list comprehension

11 B = [value for value in A if value % 10==4]
12 print(B)

[4, 64, 1024]
[4, 64, 1024]

Create empty list. Loop over original.
If element satisfies criteria, then append it to list.

31 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

old style filtering
B = []
for value in A:
 if value % 10==4: # remainder is 4
 B.append(value)
print(B)

or using list comprehension
B = [value for value in A if value % 10==4]
print(B)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

Filtering

Definition 15 (Filtering)
Build a collection from another by selecting (filtering) elements in the collection that satisfy
some criteria.

Task — Given a list of powers of 2, select all values that have remainder 4 when divided by 10:
24•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # old style filtering

4 B = []
5 for value in A:
6 if value % 10==4: # remainder is 4

7 B.append(value)
8 print(B)
9

10 # or using list comprehension

11 B = [value for value in A if value % 10==4]
12 print(B)

[4, 64, 1024]
[4, 64, 1024]

Create empty list. Loop over original.
If element satisfies criteria, then append it to list.

List comprehension

31 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

old style filtering
B = []
for value in A:
 if value % 10==4: # remainder is 4
 B.append(value)
print(B)

or using list comprehension
B = [value for value in A if value % 10==4]
print(B)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

Filtering

Definition 15 (Filtering)
Build a collection from another by selecting (filtering) elements in the collection that satisfy
some criteria.

Task — Given a list of powers of 2, select all values that have remainder 4 when divided by 10:
25•
1 A = [1,2,4,8,16,32,64,128,256,512,1024]
2

3 # old style filtering

4 B = []
5 for value in A:
6 if value % 10==4: # remainder is 4

7 B.append(value)
8 print(B)
9

10 # or using list comprehension

11 B = [value for value in A if value % 10==4]
12 print(B)

[4, 64, 1024]
[4, 64, 1024]

Create empty list. Loop over original.
If element satisfies criteria, then append it to list.

List comprehension

31 of 38

A = [1,2,4,8,16,32,64,128,256,512,1024]

old style filtering
B = []
for value in A:
 if value % 10==4: # remainder is 4
 B.append(value)
print(B)

or using list comprehension
B = [value for value in A if value % 10==4]
print(B)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

List comprehension

Definition 16 (List comprehension)
List comprehension is a compact syntax to construct a new sequence from another collection
It consists of

[EXPRESSION for value in COLLECTION if CONDITION]

where

EXPRESSION is any python expression.

COLLECTION is any python collection (set, list, . . .)

CONDITION— is python expression that results in True or False

As a programmer you don’t have to use list comprehensions and instead use the longer
traditional style, but you will need to be able to read and understand it since it is the default
style in modern Python programmers.

Replacing [and] by { and } will create a set instead of a new list.

32 of 38

Implementing Sequence Collections in Python Lists

List Comprehension Example 1
Task — Create list of first 10 square numbers from the set of natural numbers (N).

26•
1 # traditional approach

2 squares = []
3 for k in range(10):
4 squares.append(k**2)
5 print(squares)
6

7 # using list comprehension

8 squares = [k**2 for k in range(10)]
9 print(squares)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].

The EXPRESSION is k**2 which generates the required pattern.

There is no CONDITION so all elements in COLLECTION are used.

33 of 38

traditional approach
squares = []
for k in range(10):
 squares.append(k**2)
print(squares)

using list comprehension
squares = [k**2 for k in range(10)]
print(squares)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 1
Task — Create list of first 10 square numbers from the set of natural numbers (N).

27•
1 # traditional approach

2 squares = []
3 for k in range(10):
4 squares.append(k**2)
5 print(squares)
6

7 # using list comprehension

8 squares = [k**2 for k in range(10)]
9 print(squares)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Create empty list. Loop over original col-
lection, calculate expression (k**2) and
append result to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].

The EXPRESSION is k**2 which generates the required pattern.

There is no CONDITION so all elements in COLLECTION are used.

33 of 38

traditional approach
squares = []
for k in range(10):
 squares.append(k**2)
print(squares)

using list comprehension
squares = [k**2 for k in range(10)]
print(squares)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 1
Task — Create list of first 10 square numbers from the set of natural numbers (N).

28•
1 # traditional approach

2 squares = []
3 for k in range(10):
4 squares.append(k**2)
5 print(squares)
6

7 # using list comprehension

8 squares = [k**2 for k in range(10)]
9 print(squares)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Create empty list. Loop over original col-
lection, calculate expression (k**2) and
append result to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].

The EXPRESSION is k**2 which generates the required pattern.

There is no CONDITION so all elements in COLLECTION are used.

33 of 38

traditional approach
squares = []
for k in range(10):
 squares.append(k**2)
print(squares)

using list comprehension
squares = [k**2 for k in range(10)]
print(squares)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 1
Task — Create list of first 10 square numbers from the set of natural numbers (N).

29•
1 # traditional approach

2 squares = []
3 for k in range(10):
4 squares.append(k**2)
5 print(squares)
6

7 # using list comprehension

8 squares = [k**2 for k in range(10)]
9 print(squares)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Create empty list. Loop over original col-
lection, calculate expression (k**2) and
append result to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].

The EXPRESSION is k**2 which generates the required pattern.

There is no CONDITION so all elements in COLLECTION are used.
33 of 38

traditional approach
squares = []
for k in range(10):
 squares.append(k**2)
print(squares)

using list comprehension
squares = [k**2 for k in range(10)]
print(squares)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists_filters.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 2
Task — Create list of even integers up to but not including 10.

30•
1 # traditional approach

2 evens = []
3 for k in range(10):
4 if k % 2 == 0:
5 evens.append(k)
6 print(evens)
7

8 # using list comprehension

9 evens = [k for k in range(10) if k % 2 == 0]
10 print(evens)

[0, 2, 4, 6, 8]
[0, 2, 4, 6, 8]

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].
The EXPRESSION is k which generates the required pattern.
The CONDITION, k%2==0 selects the even integers only.

34 of 38

traditional approach
evens = []
for k in range(10):
 if k % 2 == 0:
 evens.append(k)
print(evens)

using list comprehension
evens = [k for k in range(10) if k % 2 == 0]
print(evens)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_evens.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 2
Task — Create list of even integers up to but not including 10.

31•
1 # traditional approach

2 evens = []
3 for k in range(10):
4 if k % 2 == 0:
5 evens.append(k)
6 print(evens)
7

8 # using list comprehension

9 evens = [k for k in range(10) if k % 2 == 0]
10 print(evens)

[0, 2, 4, 6, 8]
[0, 2, 4, 6, 8]

Create empty list. Loop over original col-
lection, if value matches criteria (even),
then append value to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].
The EXPRESSION is k which generates the required pattern.
The CONDITION, k%2==0 selects the even integers only.

34 of 38

traditional approach
evens = []
for k in range(10):
 if k % 2 == 0:
 evens.append(k)
print(evens)

using list comprehension
evens = [k for k in range(10) if k % 2 == 0]
print(evens)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_evens.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 2
Task — Create list of even integers up to but not including 10.

32•
1 # traditional approach

2 evens = []
3 for k in range(10):
4 if k % 2 == 0:
5 evens.append(k)
6 print(evens)
7

8 # using list comprehension

9 evens = [k for k in range(10) if k % 2 == 0]
10 print(evens)

[0, 2, 4, 6, 8]
[0, 2, 4, 6, 8]

Create empty list. Loop over original col-
lection, if value matches criteria (even),
then append value to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].
The EXPRESSION is k which generates the required pattern.
The CONDITION, k%2==0 selects the even integers only.

34 of 38

traditional approach
evens = []
for k in range(10):
 if k % 2 == 0:
 evens.append(k)
print(evens)

using list comprehension
evens = [k for k in range(10) if k % 2 == 0]
print(evens)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_evens.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 2
Task — Create list of even integers up to but not including 10.

33•
1 # traditional approach

2 evens = []
3 for k in range(10):
4 if k % 2 == 0:
5 evens.append(k)
6 print(evens)
7

8 # using list comprehension

9 evens = [k for k in range(10) if k % 2 == 0]
10 print(evens)

[0, 2, 4, 6, 8]
[0, 2, 4, 6, 8]

Create empty list. Loop over original col-
lection, if value matches criteria (even),
then append value to list.

The COLLECTION is range(10) which generates the list [0,1,2,3,4,5,6,7,8,9].
The EXPRESSION is k which generates the required pattern.
The CONDITION, k%2==0 selects the even integers only.

34 of 38

traditional approach
evens = []
for k in range(10):
 if k % 2 == 0:
 evens.append(k)
print(evens)

using list comprehension
evens = [k for k in range(10) if k % 2 == 0]
print(evens)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_evens.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 3
Task — Create list of the length of each word in a list of words.

34•
1 names = ['Alice', 'Bob', 'Charlie']
2

3 # traditional approach

4 lengths = []
5 for name in names:
6 lengths.append(len(name))
7 print(lengths)
8

9 # using list comprehension

10 lengths = [len(name) for name in names]
11 print(lengths) [5, 3, 7]

[5, 3, 7]

The COLLECTION is names, a list of strings.
The EXPRESSION is len(name) which computes the length of the string stored in name.
There is no CONDITION so all elements in COLLECTION are used.

35 of 38

names = ['Alice', 'Bob', 'Charlie']

traditional approach
lengths = []
for name in names:
 lengths.append(len(name))
print(lengths)

using list comprehension
lengths = [len(name) for name in names]
print(lengths)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_words.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 3
Task — Create list of the length of each word in a list of words.

35•
1 names = ['Alice', 'Bob', 'Charlie']
2

3 # traditional approach

4 lengths = []
5 for name in names:
6 lengths.append(len(name))
7 print(lengths)
8

9 # using list comprehension

10 lengths = [len(name) for name in names]
11 print(lengths) [5, 3, 7]

[5, 3, 7]

Create empty list. Loop over original col-
lection, calculate length of word, then ap-
pend result to list.

The COLLECTION is names, a list of strings.
The EXPRESSION is len(name) which computes the length of the string stored in name.
There is no CONDITION so all elements in COLLECTION are used.

35 of 38

names = ['Alice', 'Bob', 'Charlie']

traditional approach
lengths = []
for name in names:
 lengths.append(len(name))
print(lengths)

using list comprehension
lengths = [len(name) for name in names]
print(lengths)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_words.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 3
Task — Create list of the length of each word in a list of words.

36•
1 names = ['Alice', 'Bob', 'Charlie']
2

3 # traditional approach

4 lengths = []
5 for name in names:
6 lengths.append(len(name))
7 print(lengths)
8

9 # using list comprehension

10 lengths = [len(name) for name in names]
11 print(lengths) [5, 3, 7]

[5, 3, 7]

Create empty list. Loop over original col-
lection, calculate length of word, then ap-
pend result to list.

The COLLECTION is names, a list of strings.
The EXPRESSION is len(name) which computes the length of the string stored in name.
There is no CONDITION so all elements in COLLECTION are used.

35 of 38

names = ['Alice', 'Bob', 'Charlie']

traditional approach
lengths = []
for name in names:
 lengths.append(len(name))
print(lengths)

using list comprehension
lengths = [len(name) for name in names]
print(lengths)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_words.ipynb

Implementing Sequence Collections in Python Lists

List Comprehension Example 3
Task — Create list of the length of each word in a list of words.

37•
1 names = ['Alice', 'Bob', 'Charlie']
2

3 # traditional approach

4 lengths = []
5 for name in names:
6 lengths.append(len(name))
7 print(lengths)
8

9 # using list comprehension

10 lengths = [len(name) for name in names]
11 print(lengths) [5, 3, 7]

[5, 3, 7]

Create empty list. Loop over original col-
lection, calculate length of word, then ap-
pend result to list.

The COLLECTION is names, a list of strings.
The EXPRESSION is len(name) which computes the length of the string stored in name.
There is no CONDITION so all elements in COLLECTION are used.

35 of 38

names = ['Alice', 'Bob', 'Charlie']

traditional approach
lengths = []
for name in names:
 lengths.append(len(name))
print(lengths)

using list comprehension
lengths = [len(name) for name in names]
print(lengths)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_list_comp_ex_words.ipynb

Implementing Sequence Collections in Python Tuples

Aside - Tuples

Definition 17 (Tuple)
A tuple is ordered, immutable collection.

A immutable collection is unchangeable, meaning that we cannot change, add or remove
items after the collection has been created.

Tuple are denoted by round brackets, (and).

Unfortunately, round brackets are also used in controlling the order of operations in
expressions. So a tuple with just one element requires a comma.

38•
1 fruits = ("apple", "banana", "cherry")
2 print(fruits)
3

4 fruits = ("apple",)
5 print(fruits) ('apple', 'banana', 'cherry')

('apple',)

36 of 38

fruits = ("apple", "banana", "cherry")
print(fruits)

fruits = ("apple",)
print(fruits)

Outline

1. Sequences 2

2. Arithmetic and Geometric Progressions 15
2.1. Definition of Arithmetic and Geometric Progression 16
2.2. Partial Sums of AP and GP 18

3. Implementing Sequence Collections in Python 24
3.1. Common Concepts 25
3.2. Lists 26
3.3. Tuples 36

4. Strings 37

Strings

Strings

Definition 18 (string str)
A str is a sequence collection consisting of a sequence of characters, like letters, numbers, and
symbols.

Since a str is a sequence collection, all of the sequence operations we cov-
ered in lists also apply to str

Slight change in notes — we will come back to this section after functions.

38 of 38

	Sequences
	Arithmetic and Geometric Progressions
	Definition of Arithmetic and Geometric Progression
	Partial Sums of AP and GP

	Implementing Sequence Collections in Python
	Common Concepts
	Lists
	Tuples

	Strings

