
Discrete Maths

Computational Thinking

Logic

Collections

Relations & FunctionsEnumeration

Graphs and
Networks

Number Theory

Discrete Mathematics
Topic 01 : Computational Thinking

Lecture 01 : Fundamentals of Computation

Dr Kieran Murphy cbe

Computing and Mathematics, SETU (Waterford).
(kieran.murphy@setu.ie)

Autumn Semester, 2024

Outline
Using PyTutor with Colab

Python Fundamentals

Storing data and data types, Making decisions, Looping, Functions

1 of 20

mailto:kieran.murphy@setu.ie

Outline

1. Using PyTutor with Colab 2

2. Python Fundamentals 8
2.1. History of Python 9
2.2. First Look at Python Code 10
2.3. Data and Data Types 11
2.4. Collections 13
2.5. Looping 16
2.6. Making Decisions 18
2.7. Functions 20

Using PyTutor with Colab

Using PyTutor with Colab I

Before we start covering Python we want to show you PyTutor in action. The following slides
shows screenshots of the process but you should verify the steps yourself on your phone/tablet.

Step 1 — Click/Scan on QR Code
The following code outputs powers of 2, don’t worry about the actual code, just make sure that you can open and use

PyTutor . . .
1•

1 powers = [0,1,2,3,4,5,6]
2 for p in powers:
3 print(p, 2**p)

0 1
1 2
2 4
3 8
4 16
5 32
6 64

3 of 20

powers = [0,1,2,3,4,5,6]
for p in powers:
 print(p, 2**p)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_first_example.ipynb

Using PyTutor with Colab

Using PyTutor with Colab II

This should open in Colab the following notebook.
Unlike our practical notebooks, don’t bother clicking on File → Save a copy in Drive.

Step 2 — Execute the first cell to setup notebook.

4 of 20

Using PyTutor with Colab

Using PyTutor with Colab III

On executing the first cell you will get the following message. Click on Run anyway.
Step 3 — Click on Run anyway

5 of 20

Using PyTutor with Colab

Using PyTutor with Colab IV

After executing the first cell you will get the usual "Python practical setup tools version 23.2".
Step 4 — Click on second cell to run code in PyTutor

6 of 20

Using PyTutor with Colab

Using PyTutor with Colab V

You can now use PyTutor, to step back/forward through the code and see the current data values
and resultinig output.

7 of 20

Outline

1. Using PyTutor with Colab 2

2. Python Fundamentals 8
2.1. History of Python 9
2.2. First Look at Python Code 10
2.3. Data and Data Types 11
2.4. Collections 13
2.5. Looping 16
2.6. Making Decisions 18
2.7. Functions 20

Python Fundamentals History of Python

Brief History of Python
Invented in the Netherlands, early 90s by Guido
van Rossum.

“Python is an experiment in how much free-
dom programmers need. Too much freedom
and nobody can read another’s code; too lit-
tle and expressiveness is endangered.”

– Guido

Named after Monty Python.

Scalable, object oriented and functional from the
beginning.

Python 3.0 was released in 2008, to rectify certain
flaws in Python 2.*.

Most popular language for machine learning and
data mining.

Python’s Benevolent Dictator For Life

9 of 20

Python Fundamentals First Look at Python Code

First Look at Python Code

To get an idea of Python, we will take a small piece of code*
2•

1 # Solution to Euler problem 2

2

3 # Calculate the sum of the even-values in the Fibonacci sequence

4 # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

5 # value that do not exceed four million,

6

7 last = 1
8 current = 2
9

10 answer = 0
11 while current <= 4_000_000:
12 if current % 2 == 0:
13 answer += current
14 last, current = current, last + current
15

16 print(answer)

*This is a solution to the Euler Problem 2, at the programming competition site, projecteuler.net.
10 of 20

Solution to Euler problem 2

Calculate the sum of the even-values in the Fibonacci sequence
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
value that do not exceed four million,

last = 1
current = 2

answer = 0
while current <= 4_000_000:
 if current % 2 == 0:
 answer += current
 last, current = current, last + current

print(answer)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_euler_002.ipynb
https://projecteuler.net/problem=2
https://projecteuler.net

Python Fundamentals First Look at Python Code

First Look at Python Code

To get an idea of Python, we will take a small piece of code*
3•

1 # Solution to Euler problem 2

2

3 # Calculate the sum of the even-values in the Fibonacci sequence

4 # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

5 # value that do not exceed four million,

6

7 last = 1
8 current = 2
9

10 answer = 0
11 while current <= 4_000_000:
12 if current % 2 == 0:
13 answer += current
14 last, current = current, last + current
15

16 print(answer)

The character # indicates an end of line comment.
In each line everything after the # is ignored by the
computer

*This is a solution to the Euler Problem 2, at the programming competition site, projecteuler.net.
10 of 20

Solution to Euler problem 2

Calculate the sum of the even-values in the Fibonacci sequence
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
value that do not exceed four million,

last = 1
current = 2

answer = 0
while current <= 4_000_000:
 if current % 2 == 0:
 answer += current
 last, current = current, last + current

print(answer)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_euler_002.ipynb
https://projecteuler.net/problem=2
https://projecteuler.net

Python Fundamentals First Look at Python Code

First Look at Python Code

To get an idea of Python, we will take a small piece of code*
4•

1 # Solution to Euler problem 2

2

3 # Calculate the sum of the even-values in the Fibonacci sequence

4 # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

5 # value that do not exceed four million,

6

7 last = 1
8 current = 2
9

10 answer = 0
11 while current <= 4_000_000:
12 if current % 2 == 0:
13 answer += current
14 last, current = current, last + current
15

16 print(answer)

Use = to store data.

On the right of =, we have the data value(s)
On the left of =, we have the identifier name(s)

Unlike other languages (e.g., Processing) we don’t need
to state the data type. (More on this later.)

*This is a solution to the Euler Problem 2, at the programming competition site, projecteuler.net.
10 of 20

Solution to Euler problem 2

Calculate the sum of the even-values in the Fibonacci sequence
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
value that do not exceed four million,

last = 1
current = 2

answer = 0
while current <= 4_000_000:
 if current % 2 == 0:
 answer += current
 last, current = current, last + current

print(answer)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_euler_002.ipynb
https://projecteuler.net/problem=2
https://projecteuler.net

Python Fundamentals First Look at Python Code

First Look at Python Code

To get an idea of Python, we will take a small piece of code*
5•

1 # Solution to Euler problem 2

2

3 # Calculate the sum of the even-values in the Fibonacci sequence

4 # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

5 # value that do not exceed four million,

6

7 last = 1
8 current = 2
9

10 answer = 0
11 while current <= 4_000_000:
12 if current % 2 == 0:
13 answer += current
14 last, current = current, last + current
15

16 print(answer)

A core feature of Python is indenting

indent is the spacing at start of Python lines of code. It
is used to specify blocks of code, for functions, loops or
decisions.

Here we have a while loop block with lines 12–14.
Inside that, we have an if decision block with line 13.

Note the : at end of line before code block

Other languages (e.g., Processing) use brackets { and } to
specify blocks. Python doesn’t and this results in cleaner
code.

*This is a solution to the Euler Problem 2, at the programming competition site, projecteuler.net.
10 of 20

Solution to Euler problem 2

Calculate the sum of the even-values in the Fibonacci sequence
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
value that do not exceed four million,

last = 1
current = 2

answer = 0
while current <= 4_000_000:
 if current % 2 == 0:
 answer += current
 last, current = current, last + current

print(answer)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_euler_002.ipynb
https://projecteuler.net/problem=2
https://projecteuler.net

Python Fundamentals First Look at Python Code

First Look at Python Code

To get an idea of Python, we will take a small piece of code*
6•

1 # Solution to Euler problem 2

2

3 # Calculate the sum of the even-values in the Fibonacci sequence

4 # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

5 # value that do not exceed four million,

6

7 last = 1
8 current = 2
9

10 answer = 0
11 while current <= 4_000_000:
12 if current % 2 == 0:
13 answer += current
14 last, current = current, last + current
15

16 print(answer)

Python has lots of little features that make coding nicer.

For example:

We can use underscore _ to represent thousand
separator in numbers (line 11).

We can assign multiple values at the same time
(line 14).

*This is a solution to the Euler Problem 2, at the programming competition site, projecteuler.net.
10 of 20

Solution to Euler problem 2

Calculate the sum of the even-values in the Fibonacci sequence
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
value that do not exceed four million,

last = 1
current = 2

answer = 0
while current <= 4_000_000:
 if current % 2 == 0:
 answer += current
 last, current = current, last + current

print(answer)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_euler_002.ipynb
https://projecteuler.net/problem=2
https://projecteuler.net

Python Fundamentals Data and Data Types

Data and Data Types I

Python has 5 main primitive data types:

(Data) Object

None bool int float str

Every piece of data is an object.
Objects have attributes and methods

Used to represent
missing data

Used to repre-
sent boolean data:
False or True

Integer (whole
numbers) data:
. . . −2, −1, 0,
1,2. . .

Floating point
data, e.g.,
−2123.1, 1.0,
3.14. . .

Sequence of characters
data, e.g., ' ' , 'Hi ' ,
'4 ' ,. . .

An Object stores data in its attributes, and methods are used to change an object.
In Python, the type of the data is automatically determined (unlike Processing).
The type determines what you are allowed to do to a piece of data.
Function type will return the type of a piece of data.

11 of 20

Python Fundamentals Data and Data Types

Data and Data Types II
7•

1 w = None
2

3 x = 4
4 y = '4 '
5 z = 4.0
6

7 print(type(w), type(x), type(y), type(z))
8

9 x = x * 10
10 y = y * 10
11 z = z * 10
12

13 x = x * 1_000_000_000
14 z = z * 1_000_000_000
15

16 x = x / 1_000_000_000
17 z = z / 1_000_000_000
18

19 print(type(w), type(x), type(y), type(z))
12 of 20

w = None

x = 4
y = '4'
z = 4.0

print(type(w), type(x), type(y), type(z))

x = x * 10
y = y * 10
z = z * 10

x = x * 1_000_000_000
z = z * 1_000_000_000

x = x / 1_000_000_000
z = z / 1_000_000_000

print(type(w), type(x), type(y), type(z))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_data_types.ipynb

Python Fundamentals Data and Data Types

Data and Data Types II
8•

1 w = None
2

3 x = 4
4 y = '4 '
5 z = 4.0
6

7 print(type(w), type(x), type(y), type(z))
8

9 x = x * 10
10 y = y * 10
11 z = z * 10
12

13 x = x * 1_000_000_000
14 z = z * 1_000_000_000
15

16 x = x / 1_000_000_000
17 z = z / 1_000_000_000
18

19 print(type(w), type(x), type(y), type(z))

Python infers the type from the data

str data is indicated by single or double quotes.

float data has a decimal point.

or from the result of an operation on data.

int divided by an int becomes a float. Why?

12 of 20

w = None

x = 4
y = '4'
z = 4.0

print(type(w), type(x), type(y), type(z))

x = x * 10
y = y * 10
z = z * 10

x = x * 1_000_000_000
z = z * 1_000_000_000

x = x / 1_000_000_000
z = z / 1_000_000_000

print(type(w), type(x), type(y), type(z))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_data_types.ipynb

Python Fundamentals Data and Data Types

Data and Data Types II
9•

1 w = None
2

3 x = 4
4 y = '4 '
5 z = 4.0
6

7 print(type(w), type(x), type(y), type(z))
8

9 x = x * 10
10 y = y * 10
11 z = z * 10
12

13 x = x * 1_000_000_000
14 z = z * 1_000_000_000
15

16 x = x / 1_000_000_000
17 z = z / 1_000_000_000
18

19 print(type(w), type(x), type(y), type(z))

Operations (here multiplication using *) can do
different things based on the type.

12 of 20

w = None

x = 4
y = '4'
z = 4.0

print(type(w), type(x), type(y), type(z))

x = x * 10
y = y * 10
z = z * 10

x = x * 1_000_000_000
z = z * 1_000_000_000

x = x / 1_000_000_000
z = z / 1_000_000_000

print(type(w), type(x), type(y), type(z))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_data_types.ipynb

Python Fundamentals Data and Data Types

Data and Data Types II
10•
1 w = None
2

3 x = 4
4 y = '4 '
5 z = 4.0
6

7 print(type(w), type(x), type(y), type(z))
8

9 x = x * 10
10 y = y * 10
11 z = z * 10
12

13 x = x * 1_000_000_000
14 z = z * 1_000_000_000
15

16 x = x / 1_000_000_000
17 z = z / 1_000_000_000
18

19 print(type(w), type(x), type(y), type(z))

Using function type on an object is a common
feature of Python programming.

12 of 20

w = None

x = 4
y = '4'
z = 4.0

print(type(w), type(x), type(y), type(z))

x = x * 10
y = y * 10
z = z * 10

x = x * 1_000_000_000
z = z * 1_000_000_000

x = x / 1_000_000_000
z = z / 1_000_000_000

print(type(w), type(x), type(y), type(z))

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_data_types.ipynb

Python Fundamentals Collections

Collections: set, list

We will cover collections in more detail later, but for now we have:

Sets

A set is collection of distinct, unordered values.
distinct means a set cannot hold the same piece of data more than once.
unordered means we cannot sort the elements of a set of ask "what element is first?" etc.
We can manipulate sets using union |, intersection &, and set minus − operations.

Lists
A list is collection of ordered values.

ordered means the values appear in a sequence (i.e., have position). So we can talk about
which value appears before (or after) another value. (ordered ̸= sorted)
Data values do not have to be distinct.
The position of a data value in a list is called its index. Since Python is a zero-based language,
the position starts at 0.
Lists are a BIG DEAL in python and we have many operations to manipulate them (more later).

13 of 20

Python Fundamentals Collections

Collections: set
11•
1 z = set() # creating a empty set

2

3 # defining sets by stating values

4 a = {1,3,1,2,1,5,4}
5 b = {1,'a ',3}
6

7 print(len(a)) # size of set

8

9 c = a & b # intersection

10 print(c)
11

12 c = a | b # union

13 print(c)
14

15 c = a − b # set difference

16 print(c)
17

18 c = b − a # set difference

19 print(c)
14 of 20

z = set() # creating a empty set

defining sets by stating values
a = {1,3,1,2,1,5,4}
b = {1,'a',3}

print(len(a)) # size of set

c = a & b # intersection
print(c)

c = a | b # union
print(c)

c = a - b # set difference
print(c)

c = b - a # set difference
print(c)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets.ipynb

Python Fundamentals Collections

Collections: set
12•
1 z = set() # creating a empty set

2

3 # defining sets by stating values

4 a = {1,3,1,2,1,5,4}
5 b = {1,'a ',3}
6

7 print(len(a)) # size of set

8

9 c = a & b # intersection

10 print(c)
11

12 c = a | b # union

13 print(c)
14

15 c = a − b # set difference

16 print(c)
17

18 c = b − a # set difference

19 print(c)

Have special notation for creating empty
sets (We can’t use {}, more on this later).

14 of 20

z = set() # creating a empty set

defining sets by stating values
a = {1,3,1,2,1,5,4}
b = {1,'a',3}

print(len(a)) # size of set

c = a & b # intersection
print(c)

c = a | b # union
print(c)

c = a - b # set difference
print(c)

c = b - a # set difference
print(c)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets.ipynb

Python Fundamentals Collections

Collections: set
13•
1 z = set() # creating a empty set

2

3 # defining sets by stating values

4 a = {1,3,1,2,1,5,4}
5 b = {1,'a ',3}
6

7 print(len(a)) # size of set

8

9 c = a & b # intersection

10 print(c)
11

12 c = a | b # union

13 print(c)
14

15 c = a − b # set difference

16 print(c)
17

18 c = b − a # set difference

19 print(c)

Use { and } to define a set.

Repeated value are ignored.

Order does not matter.

Collections in Python can store a mixture
of types (this is really useful!)

14 of 20

z = set() # creating a empty set

defining sets by stating values
a = {1,3,1,2,1,5,4}
b = {1,'a',3}

print(len(a)) # size of set

c = a & b # intersection
print(c)

c = a | b # union
print(c)

c = a - b # set difference
print(c)

c = b - a # set difference
print(c)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets.ipynb

Python Fundamentals Collections

Collections: set
14•
1 z = set() # creating a empty set

2

3 # defining sets by stating values

4 a = {1,3,1,2,1,5,4}
5 b = {1,'a ',3}
6

7 print(len(a)) # size of set

8

9 c = a & b # intersection

10 print(c)
11

12 c = a | b # union

13 print(c)
14

15 c = a − b # set difference

16 print(c)
17

18 c = b − a # set difference

19 print(c)

Python set supports the standard
operations you know (and love)
from Mathematics.

14 of 20

z = set() # creating a empty set

defining sets by stating values
a = {1,3,1,2,1,5,4}
b = {1,'a',3}

print(len(a)) # size of set

c = a & b # intersection
print(c)

c = a | b # union
print(c)

c = a - b # set difference
print(c)

c = b - a # set difference
print(c)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_sets.ipynb

Python Fundamentals Collections

Collections: list
15•
1 z = [] # creating a empty list

2

3 # defining lists by stating values

4 a = [1,3,1,2,1,5,4]
5 b = [1,3]
6

7 print(len(a)) # size of list

8

9 c = a + b # appending lists

10 print(c)
11

12 value = c[2] # list indexing ZERO-BASED

13 print(value)
14

15 d = c[2:5] # slicing SEMI-OPEN notation

16 print(d)
17

18 value = c[−4] # negative indexing

19 print(value)
15 of 20

z = [] # creating a empty list

defining lists by stating values
a = [1,3,1,2,1,5,4]
b = [1,3]

print(len(a)) # size of list

c = a + b # appending lists
print(c)

value = c[2] # list indexing ZERO-BASED
print(value)

d = c[2:5] # slicing SEMI-OPEN notation
print(d)

value = c[-4] # negative indexing
print(value)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists.ipynb

Python Fundamentals Collections

Collections: list
16•
1 z = [] # creating a empty list

2

3 # defining lists by stating values

4 a = [1,3,1,2,1,5,4]
5 b = [1,3]
6

7 print(len(a)) # size of list

8

9 c = a + b # appending lists

10 print(c)
11

12 value = c[2] # list indexing ZERO-BASED

13 print(value)
14

15 d = c[2:5] # slicing SEMI-OPEN notation

16 print(d)
17

18 value = c[−4] # negative indexing

19 print(value)

Use square brackets, [], to create empty
lists.

15 of 20

z = [] # creating a empty list

defining lists by stating values
a = [1,3,1,2,1,5,4]
b = [1,3]

print(len(a)) # size of list

c = a + b # appending lists
print(c)

value = c[2] # list indexing ZERO-BASED
print(value)

d = c[2:5] # slicing SEMI-OPEN notation
print(d)

value = c[-4] # negative indexing
print(value)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists.ipynb

Python Fundamentals Collections

Collections: list
17•
1 z = [] # creating a empty list

2

3 # defining lists by stating values

4 a = [1,3,1,2,1,5,4]
5 b = [1,3]
6

7 print(len(a)) # size of list

8

9 c = a + b # appending lists

10 print(c)
11

12 value = c[2] # list indexing ZERO-BASED

13 print(value)
14

15 d = c[2:5] # slicing SEMI-OPEN notation

16 print(d)
17

18 value = c[−4] # negative indexing

19 print(value)

Use [and] to define a list.

Repeated value are allowed.

Order does matter (in fact is it usually important).

Collections in Python can store a mixture of types
(this is really useful!)

15 of 20

z = [] # creating a empty list

defining lists by stating values
a = [1,3,1,2,1,5,4]
b = [1,3]

print(len(a)) # size of list

c = a + b # appending lists
print(c)

value = c[2] # list indexing ZERO-BASED
print(value)

d = c[2:5] # slicing SEMI-OPEN notation
print(d)

value = c[-4] # negative indexing
print(value)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists.ipynb

Python Fundamentals Collections

Collections: list
18•
1 z = [] # creating a empty list

2

3 # defining lists by stating values

4 a = [1,3,1,2,1,5,4]
5 b = [1,3]
6

7 print(len(a)) # size of list

8

9 c = a + b # appending lists

10 print(c)
11

12 value = c[2] # list indexing ZERO-BASED

13 print(value)
14

15 d = c[2:5] # slicing SEMI-OPEN notation

16 print(d)
17

18 value = c[−4] # negative indexing

19 print(value)

Use [and] to define a list.

Because data values in a list have position (index) we
can access particular value(s) using

indexing: to access a single data value

slicing: building a new list by taking some values
from a list

15 of 20

z = [] # creating a empty list

defining lists by stating values
a = [1,3,1,2,1,5,4]
b = [1,3]

print(len(a)) # size of list

c = a + b # appending lists
print(c)

value = c[2] # list indexing ZERO-BASED
print(value)

d = c[2:5] # slicing SEMI-OPEN notation
print(d)

value = c[-4] # negative indexing
print(value)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_lists.ipynb

Python Fundamentals Looping

Looping: for, while

for— Looping when you know how many times you want to repeat
Python for loop is actually a for-each loop.

In a for-each loop you loop over values in a collection. This is considered to be less error prone
than standard for loops. (They are more likely to have off-by-one errors.)
Python has function range to efficiently build collections to be used in for loops.

for Loop while Loop

while— Looping when you don’t know how many times you want to repeat
In a while loop, since we don’t know how many times to loop, we have to define a stopping
condition.

A while loop will keep repeating a block of code while the condition calculates to a True value.
16 of 20

https://en.wikipedia.org/wiki/Off-by-one_error

Python Fundamentals Looping

Looping: for Loop
19•
1 # for loops runs over a collection

2

3 print('Looping over a list')
4 for letter in ['a', 'e ', 'i ', 'o ', 'u ']:
5 print(letter, 'is a vowel')
6

7 # BUT be careful if the collection is a set

8 # since a set does not have order

9 print('Looping over a set')
10 for letter in {'a', 'e ', 'i ', 'o ', 'u '}:
11 print(letter, 'is a vowel')
12

13 # Function range is useful in creating collections

14 # NOTE Python uses SEMI-OPEN intervals !!!

15 print('Use range to build collections')
16 for x in range(5):
17 print(x)

17 of 20

for loops runs over a collection

print('Looping over a list')
for letter in ['a', 'e', 'i', 'o', 'u']:
 print(letter, 'is a vowel')

BUT be careful if the collection is a set
since a set does not have order
print('Looping over a set')
for letter in {'a', 'e', 'i', 'o', 'u'}:
 print(letter, 'is a vowel')

Function range is useful in creating collections
NOTE Python uses SEMI-OPEN intervals !!!
print('Use range to build collections')
for x in range(5):
 print(x)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_for_loops.ipynb

Python Fundamentals Looping

Looping: for Loop
20•
1 # for loops runs over a collection

2

3 print('Looping over a list')
4 for letter in ['a', 'e ', 'i ', 'o ', 'u ']:
5 print(letter, 'is a vowel')
6

7 # BUT be careful if the collection is a set

8 # since a set does not have order

9 print('Looping over a set')
10 for letter in {'a', 'e ', 'i ', 'o ', 'u '}:
11 print(letter, 'is a vowel')
12

13 # Function range is useful in creating collections

14 # NOTE Python uses SEMI-OPEN intervals !!!

15 print('Use range to build collections')
16 for x in range(5):
17 print(x)

for loop can run over any collection, even a set.
But since a set does not have order, the result
may be surprising.

17 of 20

for loops runs over a collection

print('Looping over a list')
for letter in ['a', 'e', 'i', 'o', 'u']:
 print(letter, 'is a vowel')

BUT be careful if the collection is a set
since a set does not have order
print('Looping over a set')
for letter in {'a', 'e', 'i', 'o', 'u'}:
 print(letter, 'is a vowel')

Function range is useful in creating collections
NOTE Python uses SEMI-OPEN intervals !!!
print('Use range to build collections')
for x in range(5):
 print(x)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_for_loops.ipynb

Python Fundamentals Looping

Looping: for Loop
21•
1 # for loops runs over a collection

2

3 print('Looping over a list')
4 for letter in ['a', 'e ', 'i ', 'o ', 'u ']:
5 print(letter, 'is a vowel')
6

7 # BUT be careful if the collection is a set

8 # since a set does not have order

9 print('Looping over a set')
10 for letter in {'a', 'e ', 'i ', 'o ', 'u '}:
11 print(letter, 'is a vowel')
12

13 # Function range is useful in creating collections

14 # NOTE Python uses SEMI-OPEN intervals !!!

15 print('Use range to build collections')
16 for x in range(5):
17 print(x)

Function range is typically used to generate collections of
integers.

Python uses semi-open intervals — this means the starting
value is included but the end value is excluded.

range(END)
0, 1, 2, 3, . . . , <END

range(START, END)
START, START+1, START+2, . . . , <END

range(START, END, STEP)
START, START+STEP, START+2*STEP, . . . , <END

17 of 20

for loops runs over a collection

print('Looping over a list')
for letter in ['a', 'e', 'i', 'o', 'u']:
 print(letter, 'is a vowel')

BUT be careful if the collection is a set
since a set does not have order
print('Looping over a set')
for letter in {'a', 'e', 'i', 'o', 'u'}:
 print(letter, 'is a vowel')

Function range is useful in creating collections
NOTE Python uses SEMI-OPEN intervals !!!
print('Use range to build collections')
for x in range(5):
 print(x)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_for_loops.ipynb

Python Fundamentals Making Decisions

Making Decisions: if, elif, else

The if statement controls which blocks of code to execute based on given conditions. It has three
variations:

if test:

statements

if test:

if_statements

else:

else_statements

if test_1:

statements_1

elif test_2:

statements_2

else:

statements_3

18 of 20

Python Fundamentals Making Decisions

Making Decisions: if, elif, else
22•
1 # In the drinking game of fuzz-buzz players count in turn

2 # but replace multiples of 3 with 'fuzz',

3 # multiples of 5 with 'buzz',

4 # and multiples of 15 with 'fuzz buzz'

5

6 for k in range(1,21):
7 if k%15==0: # is k a multiple of 15?

8 print("fuzz buzz")
9 elif k%3==0: # is k a multiple of 3?

10 print("fuzz")
11 elif k%5==0: # is k a multiple of 5?

12 print("buzz")
13 else:
14 print(k)

19 of 20

In the drinking game of fuzz-buzz players count in turn
but replace multiples of 3 with 'fuzz',
multiples of 5 with 'buzz',
and multiples of 15 with 'fuzz buzz'

for k in range(1,21):
 if k%15==0: # is k a multiple of 15?
 print("fuzz buzz")
 elif k%3==0: # is k a multiple of 3?
 print("fuzz")
 elif k%5==0: # is k a multiple of 5?
 print("buzz")
 else:
 print(k)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_if.ipynb

Python Fundamentals Making Decisions

Making Decisions: if, elif, else
23•
1 # In the drinking game of fuzz-buzz players count in turn

2 # but replace multiples of 3 with 'fuzz',

3 # multiples of 5 with 'buzz',

4 # and multiples of 15 with 'fuzz buzz'

5

6 for k in range(1,21):
7 if k%15==0: # is k a multiple of 15?

8 print("fuzz buzz")
9 elif k%3==0: # is k a multiple of 3?

10 print("fuzz")
11 elif k%5==0: # is k a multiple of 5?

12 print("buzz")
13 else:
14 print(k)

range(1,21) is a collection of int starting at 1
(inclusive) up to end at 21 (exclusive)

We use == to test for equality.

% is the modulus operator. It returns the
remainder on division.

Why did we test k was a multiple of 15 first?

19 of 20

In the drinking game of fuzz-buzz players count in turn
but replace multiples of 3 with 'fuzz',
multiples of 5 with 'buzz',
and multiples of 15 with 'fuzz buzz'

for k in range(1,21):
 if k%15==0: # is k a multiple of 15?
 print("fuzz buzz")
 elif k%3==0: # is k a multiple of 3?
 print("fuzz")
 elif k%5==0: # is k a multiple of 5?
 print("buzz")
 else:
 print(k)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_if.ipynb

Python Fundamentals Functions

Functions: def, return

In Python a function is a block of code defined with a name — this allows us to reuse code
and improve code quality.
A function is a block of code that only runs when it is called.
You pass data, known as parameters, into the function. And pass data back using return.

24•
1 def add(num1, num2):
2

3 print("Number 1", num1)
4 print("Number 2", num2)
5 result = num1 + num2
6

7 return result
8

9 ans = add(5, 7)
10 print("Function returned", ans)

Function name parameters

}function body

Return value

Function call

20 of 20

def add(num1, num2):

 print("Number 1", num1)
 print("Number 2", num2)
 result = num1 + num2

 return result

ans = add(5, 7)
print("Function returned", ans)

https://githubtocolab.com/SETU-DiscreteMathematics/live/blob/main/files/PyTutor_-_function.ipynb

	Using PyTutor with Colab
	Python Fundamentals
	History of Python
	First Look at Python Code
	Data and Data Types
	Collections
	Looping
	Making Decisions
	Functions

